Quyidagi masala juda ajoyib! Apollon aylanalari, harmonik nuqtalar, isogonalllik, xullas barchasini o'z ichiga oladi.
▻ $ABC$ uchburchak ichida $M$ nuqta olingan bo'lib, $BM$ va $AC$ t/ch lar $N$ nuqtada kesishadi. $K$ nuqta $M$ nuqtaning $AC$ nisbatan simmetrigi bo'lib, $BK\cap AC = P(.)$ deylik. Agar $\angle ABP = \angle CBN$ bo'lsa, u holda $\angle AMP=\angle CMN$ ni isbotlang.
Masala IZHO 2015 (2-masala) da taqdim qilingan.
-------------------------------------------------------------------
Masala bizga shuni aytmoqdaki, $BP$ va $BN$ lar $\angle ABC$ da o'zaro isogonal nuqtalar bo'lar ekan, u holda $MP$ va $MN$ lar ham $\angle AMC$ ga nisbatan o'zaro isogonal chiziqlar bo'lishini ko'rsatishimiz lozim. Isogonallikdan \[ \frac{AP}{CP}\cdot \frac{AN}{CN}=\frac{AB^2}{BC^2} \] keladi, va bizga \[ \frac{AP}{CP}\cdot \frac{AN}{CN}=\frac{AM^2}{MC^2} \] ni isbotlash so'rolmoqda. Demak, \[ \frac{AB}{BC}=\frac{AM}{MC} \] ni ko'rsatish yetarli.
![]() |
1-chizma |