Kariya teoremasi

Quyidagi masalani ko'pchiligimiz ko'rganmiz:

▻ Aytaylik, $ABC$ uchburchakda $I$ nuqta uning ichki aylana markazi va $D$, $E$, $F$ nuqtalar ichki aylananing mos ravishda $BC$, $CA$, $AB$ tomonlarga urinish nuqtalari bo'lsin. $X$, $Y$, $Z$ nuqtalar esa $ID$, $IE$, $IF$ kesmalarda (aniqrog'i, to'g'i chiziqlarning $I$ nuqtadan bitta tomonida) olingan bo'lib, $IX=IY=IZ$ tenglik o'rinli. U holda $AX$, $BY$, $CZ$ to'g'ri chiziqlar bitta nuqtada kesishishini isbotlang.

Ushbu masala ba'zida Kariya teoremasi nomi bilan yuritiladi. 
1-chizma

-------------------------------------------------------------------

1-yechim. Noodatiy yechim beramiz. Aytaylik, uchburchak kompleks tekislikda berilgan; $A$, $B$, $C$, $I$, $D$, $E$, $F$, $X$, $Y$, $Z$ nuqtalarga $a$, $b$, $c$, $j$, $d$, $e$, $f$, $x$, $y$, $z$ kompleks sonlar mos qo'yilgan bo'lsin. $X$, $Y$, $Z$ nuqtalarda $ID$, $IE$, $IF$ kesmalarni (yoki nurlarni) bir xil nisbatda bo'luvchi nuqtalar ekan. Agar \[ \frac{IX}{ID} = \frac{IY}{IE}=\frac{IZ}{IF} = \lambda \] desak, $X$, $Y$, $Z$ nuqtalar uchun \[ x = j + \lambda (d - j), \quad y = j + \lambda (e - j), \quad z = j + \lambda (f - j) \] tenglikni keltiramiz. 

$AX$, $BY$, $CZ$ to'g'ri chiziqlar bitta $P$ nuqtada kesishishi, tekislikda $p$ kompleks son topilib, quyidagi shartlarni qanoatlantirishiga ekvivalentdir: \[ \frac{p-a}{j+\lambda (d-j) -a} \in \mathbb{R}, \] \[ \frac{p-b}{j+\lambda (e-j) -b} \in \mathbb{R}, \] \[ \frac{p-c}{j+\lambda (f-j)-c} \in \mathbb{R}. \] Boshqacha qilib aytganda, quyidagi \[ p(\overline{j+\lambda (d-j)-a}) - \overline{p} (j+\lambda (d-j)-a) + \overline{a}(j+\lambda (d-j)-a) - a(\overline{j+\lambda (d-j) -a}) = 0, \] \[ p(\overline{j+\lambda (e-j)-b}) - \overline{p} (j+\lambda (e-j)-b) + \overline{b}(j+\lambda (e-j)-b) - b(\overline{j+\lambda (e-j) -b}) = 0, \] \[ p(\overline{j+\lambda (f-j)-c}) - \overline{p} (j+\lambda (f-j)-c) + \overline{c}(j+\lambda (f-j)-c) - c(\overline{j+\lambda (f-j) -c}) = 0 \] tengliklar bir vaqtda bajarilishi lozim. Xullas, \[ z(\overline{j+\lambda (d-j)-a}) - w (j+\lambda (d-j)-a) + u (\overline{a}(j+\lambda (d-j)-a) - a(\overline{j+\lambda (d-j) -a})) = 0, \] \[ z(\overline{j+\lambda (e-j)-b}) - w (j+\lambda (e-j)-b) + u(\overline{b}(j+\lambda (e-j)-b) - b(\overline{j+\lambda (e-j) -b})) = 0, \] \[ z(\overline{j+\lambda (f-j)-c}) - w (j+\lambda (f-j)-c) + u(\overline{c}(j+\lambda (f-j)-c) - c(\overline{j+\lambda (f-j) -c})) = 0 \] chiziqli tenglamalar sistemasi $(p,\overline{p},1)$ yechimga ega bo'lishi lozim. Albatta, $3\times 3$ chiizqli tenglamalar sistemasi uchun avvale $(0,0,0)$ lar ham yechim bo'ladi, bundan biz tenglamalar sistemasining cheksiz ko'p yechimga ega ekanligini ko'rsatishimiz kerak. Bu o'z navbatida sistemaning asosiy matritsasi determinanti nol bo'lishi lozimligini ko'rsatadi. Demak, $P$ nuqta mavjudligini ko'rsatish uchun quyidagi determinant aynan nolga teng ekanligini ko'rsatish kerak ekan: \[ \begin{vmatrix} \overline{j+\lambda (d-j)-a} & -(j+\lambda (d-j)-a)  & (\overline{a}(j+\lambda (d-j)-a) - a(\overline{j+\lambda (d-j) -a})) \\ \overline{j+\lambda (e-j)-b} & -(j+\lambda (e-j)-b)  & (\overline{b}(j+\lambda (e-j)-b) - b(\overline{j+\lambda (e-j) -b})) \\ \overline{j+\lambda (f-j)-c} & -(j+\lambda (f-j)-c)  & (\overline{c}(j+\lambda (f-j)-c) - a(\overline{j+\lambda (f-j) -c}))  \end{vmatrix}. \] Ushbu determinantni $\lambda$ ga nisabatan $P(\lambda)$ ko'phad deb olishimiz mumkin, bunda $\lambda$ haqiqiy son ekanligidan $\overline{\lambda} = \lambda$ ekanligini sedan chiqarmaslik lozim. Ko'rish qiyin emas-ki, $\mathrm{deg} \, P \le 3$ bo'ladi. 

Bizda quyidagi holatlar ma'lum:

  • $\lambda =0$ da $X$, $Y$, $Z$ nuqtalar $I$ nuqta bilan ustma-ust tushadi va $AX$, $BY$, $CZ$ larning konkurrent ekanligi aniq. U holda yuqoridagi determinant ham nol bo'lishi kerak; demak, $P(0)=0$ ekan. 
  • $\lambda = 1$ da bilamiz-ki, $X=D$, $Y=E$, $Z=F$ va $AX$, $BY$, $CZ$ lar bitta Gergonne nuqtasida kesishadi. Demak, determinant ham nol, bunda $P(1)=0$ bo'lishi aniq.     
  • $\lambda \rightarrow \infty$ da $AX$, $BY$, $CZ$ lar uchburchakning balandliklariga yaqinlashadi; balanliklar esa bitta nuqtada kesishishi bilamiz. Demak, $P(\infty) = 0$ bo'lishi ham aniq ekan. Aslida,  $Q(\lambda) = \lambda^3 P(\frac{1}{\lambda})$ ko'phadni qarash lozim va $Q(0) = 0$ bo'lishi lozim. Bu degani $P$ ko'phadning birinchi koeffitsienti $0$ ga teng deganidir.
  • $p=-1$ da $AX$, $BY$, $CZ$ larning Nagel nuqtasida kesishishini bilamiz (har biri tashqi-ichki aylanalarning urinish nuqtalariga boradi). Bundan $P(-1)=0$ kelib chiqadi. 
Yuqoridagi hollardan ko'rishimiz mumkin-ki, bizning avvalo $P$ ning birinchi koeffitsienti $0$ ga teng ekan, va $P$ darajasi $2$ bo'lgan koppad bo'la oladi. Bu holda ham u $-1,0,1$ kabi $3$ ta turli ildizga ega. Algebraning asosiy teoremasidan 2-darajali ko'phad eng ko'pi bilan ikkita ildizga ega bo'lishini bilamiz. Demak, aslida $P\equiv 0$ ekan, ya'ni $0$ ko'phad.   

Bundan yuqoridagi determinant aslida har doim $0$ ekanligini keltiramiz. Demak, har qanday $\lambda$ uchun $P$ nuqta mavjud ekan.       ▢

2-yechim. Ushbu teoremaning odatiy isboti quyidagicha bo'lar edi. $AX$, $BY$, $CZ$ to'g'ri chiziqlarni $BC$, $CA$, $AB$ tomonlar bilan $A'$, $B'$, $C'$ nuqtalarda kesishtiraylik. Cheva teoremasiga ko'ra $AA'$, $BB'$, $CC'$ chevianalar bitta nuqtada kesishini ko'rsatish \[ \frac{BA'}{CA'}\cdot \frac{CB'}{AB'}\cdot \frac{AC'}{BC'} = 1 \] tenglikni o'rinli ekanligini ko'rsatish bilan teng kuchlidir. 
2-chizma

Biz $\frac{BA'}{CA'}$ nisbatni alohida topamiz. $X$ nuqtadan $BC$ ga nisbatan parallel to'g'ri chiziq o'tkazaylik va ushbu to'g'ri chiziq $AB$, $AC$ bilan $B_1$, $C_1$ nuqtalarda kesishsin; $BI$, $CI$ larni esa $U$ va $V$ nuqtalarda kesib o'tsin (2-chizmaga qarang). Agar $IX=IY=IZ=r'$ va uchburchak burchaklarini $\alpha$, $\beta$, $\gamma$ deb olsak, ko'rish qiyin emas-ki, \[ B_1X = B_1U + UX = \frac{r-r'}{\sin \beta} + r'\mathrm{ctg} \frac{\beta}{2} \] va \[ C_1X = C_1V + VX = \frac{r-r'}{\sin \gamma} + r' \mathrm{ctg} \frac{\gamma}{2} \] keladi. Umuman olganda, $f(\theta) = \frac{r-r'}{\sin \theta} + r'\mathrm{ctg} \frac{\theta}{2}$ funksiyani aniqlasak ($r,r'$ lar o'zgarmas ekanligini bilamiz), $B_1X = f(\beta)$ va $C_1X = f(\gamma)$ ekan. Demak, \[ \frac{BA'}{CA'} = \frac{B_1X}{C_1X} = \frac{f(\beta)}{f(\gamma)}. \] Simmetrik ravishda, \[ \frac{CB'}{AB'} = \frac{f(\gamma)}{f(\alpha)}, \quad \quad \frac{AC'}{BC'} = \frac{f(\alpha)}{f(\beta)} \] tengliklarni ham ko'rsatishimiz mumkin (simmetriklikda $f$ funksiya o'zgarmas bo'ladi).      ▢